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Weather derivatives pricing is one of the central issues in the study of this type of financial product, and there 
is no uniform methodology. To price the temperature option with Shanghai temperature as the underlying 
and explore how to improve the accuracy of option pricing, firstly, the time-varying O-U model is combined 
with Monte Carlo simulation to obtain the Shanghai-based temperature option pricing, and then Shanghai 
and its neighboring Dongtai, Quxian, and Dinghai are selected to constitute an option portfolio and priced 
using the same method. The results are obtained: 1) the predicted price of each unit of Shanghai temperature 
option is 1732.33 yuan, and the actual price is 1557.84 yuan, with a relative error of 9.1%; 2) the predicted 
price of each unit of option portfolio is 1598.12 yuan, and the actual price is 1500.72 yuan, with a relative 
error of 6.5%; and 3) the same pricing steps are repeated several times, with a very robust relative error. It 
can be seen that the pricing method has stability and higher prediction accuracy and can be used in practice. 
At the same time, pricing after selecting multiple cities to form a weather derivative portfolio has higher 
accuracy i.e. less risk than pricing only for a single city. 
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1. INTRODUCTION 

With its vast territory and complex and variable climate, China is one of 
the countries in the world that suffer the most from weather disasters. 
According to China Emergency Management News, in May 2023, weather 
disasters affected 919.6 thousand hectares of crops; direct economic 
losses amounted to RMB 8.45 billion. Particularly, China is a large 
agricultural country, and according to the official website of the State 
Council, the agricultural output value accounted for 16.05% of GDP in 
2021. As agriculture is significantly affected by weather, unpredictable 
and severe weather often causes economic losses to practitioners, and 
weather derivatives can provide an effective risk-hedging tool for 
agriculture and its related industries to reduce economic losses. 
Meanwhile, the introduction of weather derivatives as a financial product 
will enhance the completeness of China's financial market and promote 
the diversification and internationalization of the financial market. On May 
21, 2021, Daxin renewed its strategic cooperation agreement with the 
National Meteorological Center, focusing on the compilation of indexes for 
forecasting the yield of major crops such as accumulated temperature and 
precipitation, as well as the research and development of other 
temperature indexes and related derivatives on June 10, 2021. The 
National Meteorological Information Center and Zhengzhou Commodity 
Exchange signed a strategic cooperation framework agreement to jointly 
carry out feasibility studies, variety design, market opinion solicitation, 
and listing of weather derivatives such as weather index futures. 

Among the many weather derivatives, temperature derivatives have the 
longest history of development and are the most thoroughly researched, 
so they are naturally the focus of our development. Such derivatives are 
benchmarked against a temperature index, so a forecast model on 
temperature needs to be obtained before pricing. In 1977, a researcher 
first proposed the O-U (Ornstein-Uhlenbeck) model, which is 

characterized by mean reversion, in his study of the interest rate problem 
(Vasicek, 1977). Since the change of temperature also conforms to the 
characteristics of mean reversion, a scholar in 1998 first used the O-U 
model for temperature prediction and established a stochastic differential 
equation describing the change of temperature (Dischel, 1998). After that, 
many scholars improved the O-U model to enhance the prediction 
accuracy of the model. A sinusoidal function could be used to fit the 
seasonal trend of temperature and the volatility of temperature could be 
considered as a segmented function that varies on a month-to-month basis 
(Alaton, 2002). If the volatility of temperature was accurate to the day it 
could improve the accuracy of the model prediction (Bhowan, 2003). After 
that, a researcher introduced the Fourier transform based on the daily 
volatility model and used multiple sine and cosine functions to describe 
seasonal temperature changes, and the model became the most popular 
temperature prediction model. Domestic research on the pricing of 
temperature derivatives started late (Benth and Saltyte, 2007). A scholar 
used the O-U model to model and forecast the temperature in Shanghai (Li 
et al., 2011). A group of researchers used the time series model, the O-U 
model based on monthly volatility, and the O-U model based on daily 
volatility to model and compare the forecasting effect of the temperature; 
and found that the O-U model based on daily volatility was the optimal one 
(Wang et al., 2015). The model in which the rate of return and volatility of 
temperature varies with time is called the time-varying O-U model. In 
addition to the O-U model, there are other methods for temperature 
prediction, such as neural networks and time series. In 2012, two 
researchers used BP neural network to predict temperature (Tu and 
Wang, 2012). In 2015, two scientist used a wavelet neural network to 
predict temperature (Wang and Gou, 2015). and in 2022, While some 
researcher used the ARMA model to predict temperature (Wang, 2022). 

Based on the above background, this paper selects the time-varying O-U 
model as the theoretical basis and the Monte Carlo method as the 
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implementation algorithm to study the pricing problem of temperature 
derivatives with Shanghai as an example, hoping to help the development 
of China's weather derivatives market. At the same time, considering the 
randomness of the Monte Carlo method, to improve the accuracy of 
pricing, after being inspired by the purchase of multiple stocks in the stock 
market to hedge investment risks (Li et al., 2022). Shanghai and its 
neighboring Dongtai, Quxian, and Dinghai are selected to constitute an 
options portfolio for pricing, comparing whether there is any difference in 
the accuracy of pricing between the selection of a single city and the 
selection of multiple cities. 

2. METHOD 

2.1   Modeling  

The traditional O-U model treats both the rate of return and the rate of 
fluctuation of temperature as constants, and its stochastic differential 
equation is expressed as follows: 

𝑑𝑇(𝑡) = 𝑑𝑆(𝑡) − 𝐾(𝑇(𝑡) − 𝑆(𝑡)) + 𝜎𝑑𝐵(𝑡)    (1) 

Where:𝑇(𝑡) denotes the actual temperature,𝑆(𝑡) denotes the long-term 
and seasonal trend (also known as the deterministic trend) of 
temperature,𝐾denotes the rate of return of temperature, 𝜎denotes the 
volatility of temperature, and𝐵(𝑡) denotes the standard Brownian motion. 
Where𝐾,𝜎is a constant. Based on this model, we consider the rate of return 
and volatility as segmented functions varying monthly to obtain a time-
varying O-U model: 

𝑑𝑇(𝑡) = 𝑑𝑆(𝑡) − 𝐾(𝑚)(𝑇(𝑡) − 𝑆(𝑡)) + 𝜎(𝑚)𝑑𝐵(𝑡)    (2) 

Considering that in practice, we use days as the basic unit, the above 
equation is obtained by discretizing it: 

𝛥𝑇(𝑡) = 𝛥𝑆(𝑡) − 𝐾(𝑚)(𝑇(𝑡) − 𝑆(𝑡)) + 𝜎(𝑚)𝛥𝐵(𝑡)    (3) 

The resulting recursive equation for the temperature prediction is: 

𝑇(𝑡 + 1) = 𝑇(𝑡) + 𝛥𝑇(𝑡)    (4) 

To obtain a concrete expression of the time-varying O-U model, we need 
to estimate 𝑆(𝑡), 𝐾(𝑚) and𝜎(𝑚). Their estimation methods are described 
below. 

2.2   Estimation of 𝑺(𝒕) 

Since there are both long-term and seasonal trends in temperature, a 
combination of linear and sinusoidal functions are considered for fitting: 

𝑆(𝑡) = 𝐴 + 𝐵𝑡 + 𝐶 𝑠𝑖𝑛( 𝜔𝑡 + 𝜙)    (5) 

For modeling convenience, the data for February 29th in a leap year is 
excluded, so that 𝜔 = 2𝜋/365 i.e., the period is 365 days. Expanding the 
above equation trigonometrically yields: 

𝑆(𝑡) = 𝐴 + 𝐵𝑡 + 𝐶(𝑠𝑖𝑛( 𝜔𝑡) 𝑐𝑜𝑠 𝜙 + 𝑐𝑜𝑠( 𝜔𝑡) 𝑠𝑖𝑛 𝜙)    (6) 

Let 𝑑 = 𝐶 𝑐𝑜𝑠 𝜙 , 𝑒 = 𝐶 𝑠𝑖𝑛 𝜙 , 𝑡1 = 𝑠𝑖𝑛( 𝜔𝑡), 𝑡2 = 𝑐𝑜𝑠( 𝜔𝑡), Equation (5) be 
equivalent to estimating the coefficients of the following linear regression 
equation: 

  (7) 

Finally, the parameter estimates are obtained:𝐴 = 𝑎,𝐵 = 𝑏,𝐶 = √𝑑2 + 𝑒2, 
𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛( 𝑒/𝑑).  

2.3   Estimation of 𝑲(𝒎) 

Harness estimation is used to estimate the mean reversion speed 
(Behowan, 2003). 

  (8) 

Where, 𝑚 =1,2,……,12, represents the mth month of the year, 𝑁𝑚 
represents the number of days in the month, 𝜎𝑚 represents the fluctuation 
rate of the temperature in the mth month,𝑆(𝑖) represents the 
deterministic trend of the ith day, and 𝑇(𝑖) represents the true 
temperature of the ith day. 

2.4   Estimation of 𝝈(𝒎) 

By Jing Wang[12], the quadratic variate method is used to estimate 𝜎(𝑚): 

  (9) 

Where: 𝑚 =1,2,……,12, represents the nth month of the year,𝑁𝑚 represents 
the number of days in the month, and 𝑇𝑗  represents the temperature on 

the jth day of the mth month. 

2.5   Monte Carlo Method 

The Monte Carlo method, also known as random sampling or statistical 
experimentation method, is based on the law of large numbers as a 
theoretical basis and fits the real situation by generating a large number 
of random samples. In this paper, the steps of option pricing using the 
Monte Carlo method are as follows: 

• Given 𝑇(𝑡), 𝑆(𝑡), 𝐾, 𝜎

• randomly generated 𝜉~𝑁(0,1) 

• 𝛥𝑇(𝑡) = 𝛥𝑆(𝑡) − 𝐾(𝑇(𝑡) − 𝑆(𝑡)) + 𝜎𝜉

• 𝑇(𝑡 + 1) = 𝑇(𝑡) + 𝛥𝑇(𝑡)（5） 

• Repeat steps (1) to (4) 𝑁times to obtain𝑇(𝑛 + 1), 𝑇(𝑛 +
2), ⋯ , 𝑇(𝑛 + 𝑁), which in turn gives the price P based on the option 
pricing formula; 

• Repeat step (5) 10,000 times to get 𝑃1, 𝑃2, ⋯ 𝑃10000

• The final option price is 𝑃̄ =
1

10000
∑ 𝑃𝑖

10000
𝑖=1

3. RESULT

3.1    Data Sources 

In this paper, the daily average temperature from January 1, 1991, to 
December 31, 2022, in four regions, namely, Shanghai, Quxian, Dongtai, 
and Dinghai, is used as the modeling data, which is obtained from the 
National Oceanic and Atmospheric Administration (NOAA) of the United 
States. 

3.2   Parameter Estimation 

According to Equation (7), least squares regression was performed on the 
data using Python software to produce the following parameter estimates: 

Table 1: Parameter Estimation Results 

Parameter Estimation Parameter Estimation 

a 16.5192 A 16.5192 

b 0.0001 B 0.0001 

d -4.8867 C 11.6791 

e -10.6076  1.1391 

From this we can get： 

  (10) 

The fit of the model is shown below: 
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Figure 1: Fitting Curve 

From the visualization of the above figure, the fitting effect is relatively 
good, next the Root Mean Square Error (RMSE) is used to quantitatively 
observe the fitting effect of the model, which is calculated by the following 
formula: 

  (11) 

𝑛represents the length of the sequence, 𝑇𝑖 represents the real value, and 𝑇̂𝑖

represents the predicted value. Substituting the actual and predicted 
temperatures, the result is obtained as 0.085, i.e., the average daily 

prediction error is at  0.085 degrees Celsius.

Then the temperature recovery rate and volatility for each month are 
obtained from equations (8) and (9). The results are as follows: 

Table 2:  Mean reversion speed and volatility 

Month   K

1 2.3328 0.1289 

2 2.6078 0.0686 

3 2.7192 0.4490 

4 2.5974 0.5250 

5 2.2478 0.0707 

6 1.8971 0.1592 

7 1.6129 0.0863 

8 1.3483 0.1714 

9 1.4469 0.1277 

10 1.6134 0.0274 

11 2.4433 0.0694 

12 2.5177 0.3467 

At this point, all the parameters we need are estimated, and we can use the 
real-variable O-U model with Monte Carlo methods for temperature 
forecasting and option pricing. 

3.3   Option Pricing 

Before introducing the option pricing formula it is necessary to introduce 
the HeatingDegree-Days (HDD): 

  (12) 

Where: 𝑋𝑖 represents the temperature on day i and 𝑁𝑚represents the total 
number of days. The idea behind the formulation of the heat production 
index is whether the day is overheated or not at the standard of 18 degrees 
Celsius, and if so, quantify the degree of overheating.  

In practice, we are not concerned with the weather conditions on a 
particular day, but over some time. Therefore an indicator needs to be 
developed to describe how overheated the weather is over a specific 
period. A natural idea is to add up the daily heating indices to get a 
cumulative heating index: 

       (13) 

Then the pricing formula for a European call option on HDDs temperature 
is as follows: 

  (14) 

where: 𝑇1, 𝑇2 stands for the start and end time of the contract; 𝑇2 −
𝑇1stands for the effective time of this contract; 𝐾 is the contract execution 
index, given in advance; 𝑟 is the risk-free interest rate; and 𝑁𝑝is the 

nominal value of the contract, i.e., how many units of compensation are 
provided by one unit of the index.  

Now assume that the period is from January 1, 2023, to January 31, 2023, 
then  𝛥𝑇 = 30. Let K=100；r=2.6%(five-year Treasury rate); and 𝑁𝑝 = 

10. We generate 10,000 random paths of temperatures using the Monte 
Carlo method and then use equation (14) to obtain the corresponding 
option prices and finally take the average. Combined with the relative 
error: 

  (15) 

We get a predicted option price of 1732.33 yuan and an actual option price 
of 1557.84 yuan, with a relative error of 9.1%. 

3.4   Robustness of The Pricing Model 

In the above process of option pricing, we applied the Monte Carlo method 
with stochasticity thus leading to different results for each experiment. 
This leads to the question, how big is the difference between the results in 
each case? If the difference is too large it means that the model is not stable 
enough to be applied. For example, the first time we get an option price of 
1000 yuan, and the second time we get an option price of 20 yuan, this 
error is too large. To explore the stability of the model in the paper, we 
repeat the pricing process ten times and calculate the HDDs index and 
option price relative errors separately. Since the actual HDDs index and 
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option price are constant, if the relative error is approximated each time, 
we can assume that the output of the model does not differ much each time 
and has application value. The final experimental results show that the 

relative error of HDDs index is stabilized at 26% and the relative error of 
option price is stabilized at 9%. This proves the stability of the model and 
the model can be applied in practice. 

Table 3: Relative error in Hdds and option prices 

Number of experiments HDDs option price 

1 26.36% 8.96% 

2 26.39% 8.98% 

3 26.33% 8.94% 

4 26.32% 8.93% 

5 26.16% 8.82% 

6 26.47% 9.03% 

7 26.39% 8.98% 

8 26.37% 8.96% 

9 26.50% 9.05% 

10 26.35% 8.95% 

3.5   Pricing of Option Portfolios 

Shanghai and Three regions around Shanghai: Dongtai, Quxian, and 
Dinghai are selected to price the portfolio using the methodology above 
and calculate the relative error to the actual price. The pricing formula for 
the portfolio is as follows: 

    (16) 

Similar to above, let 𝛥𝑇 = 30,r=2.6%,𝑁𝑝=10,𝐾 =400. The predicted price 

was 1,598.12 yuan and the actual price was 1,500.72 yuan, a relative error 
of 6.5%. The same steps are repeated ten times and the resulting relative 
error is plotted in the following graph: 

Figure 2: Relative errors in option pricing across cities 

4. CONCLUSION AND DISCUSSION 

This paper first introduces the establishment and solution of the O-U 
model and then selects the temperature data of Shanghai from 1991 to 
2022 for empirical analysis. Through software modeling, this paper 
obtains the time-varying O-U model about Shanghai's temperature uses 
the Monte Carlo method to price the European call option on HDDs index, 
and obtains the result of 1732.33 yuan, which indicates that the method is 
feasible. Through several repeated experiments, we find that the relative 
deviations of the predicted HDDs index, option price, and the respective 
actual results are at a fixed value of 26% and 9%, respectively, which 
indicates that the method is stable, does not have excessive deviations, and 
has application value. By selecting Shanghai, Dongtai, Dinghai, and Quxian 
to form a portfolio and pricing it, we find that the relative deviation 
between the theoretical price and the actual price of the portfolio is stable 
at 6.5%, which is lower than that of any individual city in the portfolio, 
suggesting that this strategy to improve pricing accuracy is effective. On 
the basis of this paper, the following research can be conducted: 1. 
Changing the temperature volatility in the O-U model from changing on a 
monthly basis to changing on a daily basis may yield more accurate 
theoretical prices.2. Consider risk hedging strategies in more depth, such 
as which kinds of weather derivatives need to be purchased in the 
portfolio of a weather derivative, and how to determine the weights of the 

purchases.3. Currently, neural-network-based temperature forecasts are 
selected from classical models, and it is possible to try to introduce more 
advanced machine learning methods for temperature prediction. 
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