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Transportation is not only a significant force in promoting economic and social development but also one of 
the primary industries that consume energy and emit greenhouse gas emissions. In order to achieve China's 
overall goal of reaching the carbon peak by 2030, this paper selects six influencing factors, such as population, 
GDP and urbanization rate, and proposes a combined prediction model based on ARIMA-LSTM-BP, which 
predicts transportation carbon emissions in China from 2022 to 2050 under three scenarios of low carbon, 
benchmark and high carbon. The results show that the peak emissions of transportation in low-carbon, 
benchmark and high-carbon scenarios are 1624.7732 million tons, 1478.1694 million tons and 1367.5417 
million tons, respectively, reaching the peak in 2031, 2034 and 2039. It can be seen that in China, the 
transportation industry alone cannot achieve the goal of reaching the peak by 2030, and more measures need 
to be taken to achieve the carbon peak of the transportation industry as soon as possible. 
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1.   INTRODUCTION 

The document of the 20th National Congress of the CPC Central Committee 
proposed that "actively and steadily promote carbon to peak and carbon 
neutrality" and achieve the goal of "double carbon" is not only the 
inevitable need for China to seek development at a new level of 
harmonious coexistence between man and nature but also an essential 
part of promoting Chinese style modernization. As one of the three 
significant areas of energy consumption and carbon dioxide emissions, 
transportation is an important source of carbon dioxide emissions (Yang, 
2023). The transportation industry is developing rapidly and will become 
the key industry to achieve carbon emission reduction goals in the future. 
However, with the popularity and rapid increase of the number of 
transportation tools, the transportation industry's contribution to 
environmental pollution is also increasing, which will not only affect 
human health and the ecological environment but also hurt the 
development of the transportation industry. Therefore, it is of great 
practical significance to predict the peak carbon emissions of the 
transportation industry and formulate appropriate carbon emission 
reduction policies. 

Scholars at home and abroad have carried out a series of research studies 
on traffic carbon emissions, among which research on the influencing 
factors and prediction of traffic carbon emissions is a hot spot in this field. 

In the selection of influencing factors of traffic carbon emissions, scholars 
usually use logarithmic mean decomposition analysis (LMDI), Kaya 
identity, IPAT model, and extensible stochastic environmental impact 
assessment model (STIRPAT) to select influencing factors. Solaymani used 
the LMDI decomposition method to conduct in-depth research on seven 
major carbon emission countries and analyzed the driving factors of 
carbon emissions in the transportation sector (Solaymani, 2019). Jia et al. 
decomposed the factors of transportation carbon emissions in Hebei 
Province through the improved Kaya identity and calculated the 

correlation between each decomposition index and transportation carbon 
emissions by using the grey correlation model (Jia, 2020). Commoner 
proposed the classic IPAT model and used it to explain the relationship 
between population, wealth, and environmental pressure (Commoner, 
1990). Because the IPAT model only explores the relationship between 
population, wealth and environment, it has certain limitations, so Dietz et 
al. proposed the STIRPAT model, which has also become an essential 
means for scholars to study the influencing factors of traffic carbon 
emissions in recent years (Dietz, 1997). Andrés et al. took energy intensity, 
per capita freight volume and other factors as influencing factors of traffic 
carbon emissions based on the STIRPAT model (Andrés et al., 2018). Liu 
et al. used the STIRPAT and GTWR model to reveal the impact of 
population size, urbanization rate, the number of private cars and other 
factors on traffic carbon emissions from the perspective of time and space 
(Liu et al., 2012). Zhang et al. pointed out through the expanded STIRPAT 
model that the population size and per capita GDP will promote the rise of 
traffic carbon emissions, while the energy intensity has a restraining effect 
(Zhang et al., 2020). Yan et al. selected urbanization rate, subway 
passenger volume and energy consumption per unit GDP as the main 
influencing factors of traffic carbon emissions by building the STIRPAT 
model (Yan et al., 2020). In the existing research, scholars usually choose 
factors such as population size, gross national product, energy intensity, 
and energy structure to study (Dong et al., 2020; Liu et al., 2023; Han et al., 
2022; Wang et al., 2021). It can be found that the STIRPAT model has 
obvious advantages in selecting factors. Therefore, this paper uses the 
STIRPAT model to select the influencing factors of transportation carbon 
emissions. 

In the field of transportation carbon emission prediction, scholars at home 
and abroad have conducted much research. The prediction models mainly 
include long-term energy alternative planning system (LEAP), 
autoregressive moving average model (ARIMA), STIRPAT model, long and 
short-term memory model (LSTM), BP neural network, etc. Fang et al. 
predicted the carbon emissions in the field of transportation in Hunan 
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Province from 2022 to 2035 through the leap model (Fang et al., 2023). 
The results showed that carbon emissions were expected to peak in 2033 
and 2029 under the low-carbon and enhanced low-carbon scenarios. 
Hassouna et al. used the ARIMA model to predict China's aviation carbon 
emissions (Hassouna et al., 2020). Bian et al. estimated the future carbon 
emissions of the Qinghai Province's transportation system Based on the 
STIRPAT model simulation results. They believed improving the technical 
level was the key to reducing carbon emissions from transportation in 
Qinghai Province (Bian et al., 2019). In recent years, scholars have 
gradually applied machine learning methods to predict carbon emissions 
from transportation. Ağbulut used an artificial neural network model 
(ANN), support vector machine (SVM), and deep learning (DL) to predict 
the carbon emissions of transportation in Turkey. The research showed 
that the three methods had achieved ideal results (Ağbulut, 2022). Huang 
et al. used LSTM to predict China's carbon emissions (Huang et al., 2019). 
Pan et al. established a BP neural network model and predicted CO2 
emissions in Gansu Province from 2021 to 2030, with a prediction error of 
2 × 10-4, with high accuracy (Pan et al., 2023). Zhao et al. combined the 
lasso regression model with the BP neural network to predict the carbon 
emissions of Henan Province from 2021 to 2035 (Zhao et al., 2022). Hu et 
al. predicted China's carbon emission intensity based on the ARIMA-BP 
model, and the results showed that the prediction effect was excellent (Hu 
et al., 2022). Shao et al. constructed the grey neural network combination 
model of the grey prediction model BP neural network model 
combination. They verified that the combination model could improve the 
model's prediction accuracy (Shao et al., 2016). 

There has been much research on predicting carbon emissions from 
transportation, and the research and improvement methods have their 
characteristics. In this paper, the ARIMA model is selected to better fit the 
linear characteristics in the prediction time series, LSTM has obvious 
advantages for long-term prediction, the BP neural network has self-
adaptive solid ability and can deal with nonlinear characteristics well 
(Zhang et al., 2022). 

Now, ARIMA, LSTM and BP models are combined, and a weighted 
combination model based on ARIMA-LSTM-BP is proposed. First, the 
ARIMA model is used to fit the linear characteristics in the sequence. Then, 
the LSTM neural network is used to correct the ARIMA model prediction 
residual to fit the nonlinear characteristics in the sequence, and then 
combined with the BP neural network prediction results, the error 
reciprocal method is used to determine the weight for combined 
prediction to reduce the error. Finally, combined with the scenario 
analysis method, this paper predicts the changing trend of China's 
transportation carbon emissions from 2022 to 2050 under the three 
baseline scenarios: low-carbon and high-carbon. 

2.   DATA AND METHODS 

2.1   Carbon Emission Measurement Of China's Transportation 
Industry 

Regarding measuring carbon dioxide emissions from transportation, the 
IPCC 2006 guidelines for national greenhouse gas inventories provide 
measurement methods based on two perspectives. The first is the "top-
down" method, which calculates the carbon emissions of the 
transportation industry according to the conversion coefficient of energy 
consumption and vehicles' energy carbon emission coefficient. The second 
is the "bottom-up" method, which calculates the energy consumption of 
the transportation industry according to the data of different types of 
vehicles and the fuel consumption per unit mileage to calculate the carbon 
dioxide emissions (Fang et al., 2017). This study simulates the future trend 
of carbon emissions in the transportation industry through prediction, so 
the "top-down" method is adopted for calculation. The calculation formula 
is shown in formula (1). 

𝐶𝑂2 = ∑ 𝐶𝑖𝑖 = ∑ 𝐸𝑖 × 𝐹𝑖𝑖 = ∑ (𝐸𝑖 × 𝑁𝐶𝑉𝑖 × 𝐶𝐶𝑖 × 𝐶𝑂𝐹𝑖 ×
44

12
)𝑖                   (1) 

Where C is the carbon emission of the transportation industry; i refers to 
fuel type (such as gasoline, diesel, fuel oil, etc.); Ci is the amount of carbon 
dioxide produced by the ith energy consumption; Ei is the consumption of 
the ith energy; Fi is the carbon emission coefficient of the ith energy; Ncvi 
is the average low calorific value of the ith energy source; CCi is the carbon 
content per unit calorific value of the ith energy; COFI is the carbon 
oxidation rate of the ith energy; 44/12 is the conversion coefficient 
between carbon and carbon dioxide. 

At present, the energy consumption data of the transportation industry 
are not counted separately in the China Energy Statistical Yearbook and 
the China Statistical Yearbook, but are combined with the transportation, 
storage, and post and telecommunications industries. Because the latter 

two account for a relatively small proportion, and most of the energy 
consumption of the storage and post and Telecommunications industries 
is used for transportation, the consolidated data can also reflect the level 
of energy consumption in transportation to a large extent, so this study 
uses this consolidated data to measure the total carbon emissions 
generated by energy consumption in transportation. The carbon emission 
factors of different energy sources used in the accounting are determined 
by the correlation coefficients published by the IPCC (United Nations 
Intergovernmental Panel on Climate Change) and the National 
Development and Reform Commission. The calculation results of China's 
transportation carbon emissions and per capita transportation emissions 
from 1990 to 2021 are shown in Figure 1. 

The results show that from 1990 to 2021, China's total carbon emissions 
from transportation showed an upward trend. By 2021, the carbon 
emissions from transportation were 946.667 million tons, with an average 
annual growth rate of 2.87%. At the same time, China's per capita 
transportation carbon emissions are also rising yearly. The annual 
increase in total and per capita carbon emissions shows that the 
transportation industry has a high potential for low-carbon emission 
reduction. Therefore, predicting transportation carbon emissions is 
significant to realizing China's dual carbon goal. 

 

(a) Carbon emissions and per capita carbon emissions 

 

(b) Carbon emissions 

 

(c) Per capita carbon emissions 

Figure 1: Emissions from China's transportation industry and per capita 
carbon emissions from transportation. 
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2.2   Selection Of Influencing Factors 

The IPAT model first proposed comprehensively reflects the relationship 
among population, per capita wealth, technology and environment. It is a 
widely recognized model, and its general form is: 

𝐼 = 𝑃 × 𝐴 × 𝑇                                                                                                      (2) 

Where I refers to environmental pollution; P is the population; A is GDP 
per capita; T indicates technical status. 

STIRPAT model is proposed based on the IPAT model, which can better 
explore the relationship between various influencing factors and carbon 
emissions. Its standard form is (Jiao et al., 2012): 

𝐼 = 𝑎𝑃𝑏𝐴𝑐𝑇𝑑𝑒                                                                                                     (3) 

Where, I represents environmental factors; a represents model coefficient; 
P、A and T respectively represent the population, financial status and 

scientific development technology; b、c and d respectively represent the 
changes of these reference values; e is random error. 

Gu found that clean energy, transportation energy intensity, freight 
turnover, passenger turnover, urbanization level, per capita GDP and 
other factors significantly impact the transportation industry's carbon 
emissions (Gu, 2023). Zuo et al. summarized the existing research and 
found that many complex factors affect transportation's carbon emissions, 
which can be summarized into five aspects: transportation technology and 
management, economic development, residents' travel behavior, urban 
morphology and environmental factors (Zuo et al., 2023). Liu et al. 
believed that the per capita level of economic activity was crucial in 
improving carbon emissions in the transportation industry (Liu et al., 
2015). Yang   found    that    many     variables,   including  energy intensity, 

 transportation efficiency, travel intensity of urban residents and per 
capita economic activity level, will affect the carbon emissions of the 
transportation industry to varying degrees (Yang, 2023). Chen et al. 
selected seven indicators such as vehicle ownership, carbon emission 
intensity and urbanization rate as the influencing factors of regional traffic 
carbon emissions in China (Chen et al., 2018). Liu et al. found in the 
research on the influencing factors of carbon emissions from the 
transportation industry in a province in Southwest China that the 
population, per capita GDP and vehicle ownership are the main reasons 
for the increase of carbon emissions from transportation in the province 
(Liu et al., 2023). 

After summarizing the existing literature, this paper expands the basic 
STIRPAT model and selects six influencing factors, including population, 
GDP, energy intensity, urbanization rate, vehicle ownership and passenger 
turnover, to establish the extended STIRPAT model of the transportation 
industry. The model expression is shown in formula (4): 

𝐶 = 𝑎 × 𝑃𝑏 × 𝐴𝑐 × 𝑇𝑑 × 𝑈𝑒 × 𝐶𝑃𝑓 × 𝑅𝑃𝑔                                             (4)
  
Where C is the total carbon emission; P stands for population (ten 
thousand); A stands for GDP (trillion yuan); T stands for energy intensity 
(tons of standard coal/ ten thousand yuan); U represents urbanization 
rate (%); CP stands for vehicle ownership (billion); RP represents 
passenger turnover (billion person kilometers). 

When measuring the level of the above six influencing factors, GDP adopts 
the constant price in 1990 to consider the actual GDP of each year to avoid 
the impact of price. The above-detailed data are mainly from each year's 
China Statistical Yearbook, and the descriptive statistical results of each 
variable are shown in Table 1. 

Table 1: Descriptive Statistics of Variables 

Variable Unit Minimum Maximum Mean Standard deviation 

population ten thousand 114333 141389 130221.44 7978.01 

GDP Trillion yuan 1.89 54.16 20.05 15.99 

urbanization rate % 26.41 64.19 44.19 12.28 

Energy intensity Tons of standard coal/10000 yuan 0.51 1.56 0.88 0.27 

Vehicle ownership Billion 0.15 3.79 1.55 1.17 

Passenger turnover billion person kilometers 5628.40 35349.24 18946.32 9554.26 

Pearson correlation is used to analyze the correlation between various 
influencing factors and carbon emissions from transportation, and the 
correlation coefficient is calculated. The analysis results are shown in 
Table 2. It can be seen from the table that there is a significant positive 
correlation between population, GDP, urbanization rate, vehicle 
ownership, passenger turnover and transportation carbon emissions, and 
a significant negative correlation between energy intensity and 
transportation carbon emissions. These six factors are strongly correlated 
with transportation carbon emissions. 

Table 2: Correlation Analysis Of Influencing Factors 

Influencing factors Transportation carbon emissions 

population 0.988*** 

GDP 0.991*** 

urbanization rate 0.988*** 

energy intensity -0.864*** 

vehicle ownership 0.998*** 

passenger turnover 0.843*** 

1 Note: * * *, ***, * respectively represent 1%, 5% and 10% significance 
levels 

2.3   ARIMA Model 

The autoregressive moving average model is a time series prediction and 
analysis method widely used in time series data analysis (Wang et al., 
2022). The model is expressed as ARIMA (p, d, q), where the parameters 
p, d and q represent the structure of the prediction model, AR represents 
autoregression, and p is the number of autoregressive terms; MA stands 
for moving average, q is the number of moving average items; d represents 
the difference order of the stationary sequence, and the calculation 
formula is shown in formula (5): 

𝑌𝑡 = 𝜇 + ∑ 𝛼𝑖𝑌𝑡−1
𝑝
𝑖=1 + ∑ 𝜃𝑖𝜀𝑡−1

𝑞
𝑖=1 + 𝜀𝑡                                                 (5) 

Where Yt is the data involved in the calculation at time t; 𝜇 is a constant; p 
is the number of autoregressive terms; q is the number of moving average 
items; αi is the data autocorrelation coefficient; θi is the error 
autocorrelation coefficient; εt is the white noise sequence. 

The modeling steps of the ARIMA model are as follows: 1) check the 
stationarity of the time series, and if the series fails the test, carry out the 
difference operation. In general, the first-order difference can get the 
stationary series, and the high order of the difference will lead to the loss 
of data information, which is not conducive to the establishment of the 
model; 2) Draw the autocorrelation function diagram and partial 
autocorrelation function diagram to find the possible value range of 
parameters p and q, and then determine the optimal combination 
of p and q in the model through Akaike information criterion (AIC) and 
Bayesian information criterion (BIC). The more pronounced the AIC and 
BIC values are, the better the model effect is; 3) Check the residual error 
to see if it conforms to the normal distribution. If it does not conform to 
the normal distribution, determine the p and q values and the order again; 
4) The prediction and error analysis are carried out after the test. 

2.4.   Long Short-Term Memory 

Long short-term memory networks (LSTM) is a variant of recurrent neural 
networks (RNN) proposed by Hochreiter et al., which can remember long 
and short-term information (Hochreiter et al., 1997). The model solves the 
problem that RNN has limited processing ability for too long or too short 
sequences, overcomes the influence of gradient disappearance in the 
process of RNN training, and has good processing ability for time series 
data. Compared with RNN, each neuron in the LSTM model contains three 
basic cell gates, which are divided into input gate it, output gate Ot and 
forgetting gate ft according to different functions. The cell structure of 
LSTM is shown in Figure 2. 
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Figure 2: LSTM Hidden Layer Structure Diagram. 

The steps of LSTM network prediction are as follows: 

Step 1: Calculate the forgetting gate. The forgetting gate controls the 
information deleted or forgotten in the memory unit. ht-1 represents the 
hidden layer information of the previous time, and Xt represents the data 
input at the current time. The amount of information to be forgotten and 
retained through the forgetting gate can be determined. The calculation 
formula is as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)                                                                                 (6) 

Where ft is the output value of the forgetting gate at time t, σ is the sigmoid 
activation function, Wf is the weight matrix of the forgetting gate, and bf is 
the bias coefficient of the forgetting gate. 

Step 2: Calculate the input gate. The input gate controls the amount of new 
information flowing into the control unit. First, the sigmoid activation 
function takes the input data and the output of the previous time step as 
the input and then creates a candidate value C through the tanh layer. 
Combine these two parts to update the cell state. The calculation formula 
is as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)                                                                          (7) 

𝐶̃𝑡 = tanh(𝑊𝑐 × [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)                                                                       (8) 

Where it is the output information of the input gate at time t; Wi is the 
weight; bi is the input gate offset coefficient; σ is the sigmoid activation 
function; bC is the bias coefficient of the cell state gating unit. 

The input gate will continuously update the state and update Ct-1 to Ct. The 
memory information Ct-1 at the previous time multiplied by ft indicates the 
information to be discarded and retained. Then, add the candidate value 
𝐶̃𝑡 to obtain the new cell state Ct, and the calculation formula is as follows: 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡                                                                              (9) 

Step 3: Calculate the output gate. The output gate determines how much 
information is extracted from the memory unit and uses the following step 
to predict. First, control how many memory units will be output according 
to the sigmoid function, then use the tanh function to scale the value, 
calculate the value to be output, and finally multiply the two results to 
determine the output information ht. The calculation formula is as follows: 

𝑂𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)                                                                      (10) 

ℎ𝑡 = 𝑂𝑡 × tanh(𝐶𝑡)                                                                                                (11) 

Where Ot is the output information of the output gate at time t; Wo is the 
weight; bo is the offset coefficient of the output gate; σ activates the 
function for sigmoid. 

2.5   Back-Propagation Neural 

As a widely used depth method, the BP neural network is famous for 
effectively storing and understanding many data association 
characteristics. It is a multilayer feedforward neural network trained 
according to the error backpropagation algorithm. Firstly, the features of 
the learning samples are input from the input layer through forward 
propagation, then processed by each hidden layer, and finally output from 
the output layer. For the error between the actual output and the expected 
output of the network, the weight and threshold of the model need to be 
continuously adjusted by backpropagation, and the gradient descent 
method is used to optimize the model parameters until the final fitting 
value error is the minimum, so as to end the training. A neural network 
generally comprises input, hidden, and output layers. The number of 
neurons in each layer varies according to different situations. 

Taking the historical value of carbon emissions of China's transportation 
industry every three years as the input, and through continuous training, 
a BP neural network prediction model with a topology of 3-6-1, which is 
influenced by the historical value, is finally constructed, as shown in Figure 
3. Where Xt-1、Xt-2、Xt-3 is the carbon emission at time t-1、t-2、t-3 , and 
Yt is the predicted carbon emission at time t. 

 

Figure 3: BP Neural Network Structure. 
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2.6   Combined Forecasting Model 

In order to solve the problem of the accuracy of a single model not being 
high in the prediction and improve the prediction accuracy and 
generalization ability of the model, the single model is combined in 
different combinations. The advantages of each model are used to make 
up for the defects of the single model to improve the prediction's stability 
and accuracy. This study mainly adopts the combination method based on 
residual sequence and error weight. The structure of the combination 
model is shown in Figure 4. 

 

Figure 4: Structure diagram of composite model. 

Combination method based on residual sequence: To compensate for the 
disadvantage that the ARIMA model is challenging to extract nonlinear 
components of time series, the ARIMA-LSTM combination model is 
established by combining the advantages of the ARIMA model and LSTM 
neural network model. Firstly, the ARIMA model is used to predict the 
carbon emissions of the transportation industry, and the predicted 
value X1 of the ARIMA model is obtained, and the error sequence e is 
obtained. Then, taking the error sequence e as the input, the LSTM neural 
network is used to predict the error, and the error prediction value e1 is 
obtained. Finally, the ARIMA-LSTM combined model prediction value Y1 is 
obtained by adding the ARIMA model prediction value and the error 
prediction value; 

𝑌1 = 𝑋1 + 𝑒1                                                                                                  (12) 

Combination method based on error weight: To reduce the prediction 
error of the combination model, the model with more minor errors is given 
an enormous weight. Firstly, the prediction value Y2 of the BP neural 
network model is obtained, and the prediction error e2 of the model is 
calculated. Similarly, the prediction error e3 of the ARIMA-LSTM model is 
obtained. Secondly, the weight l of the prediction error of the two models 
is calculated respectively 𝑙1、𝑙2. The predicted value y of the ARIMA-LSTM 
-BP combined model is obtained by weighting the predicted value 
according to the error weight. 

𝑙1 =
𝑒2

𝑒2+𝑒3
                                                                                                   (13) 

𝑙2 =
𝑒3

𝑒2+𝑒3
                                                                                                   (14) 

𝑌 = 𝑙1 × 𝑌1 + 𝑙2 × 𝑌2                                                                                            (15)
  

2.7   Model Evaluating Indicator 

This study mainly uses the average absolute percentage error (MAPE), 
root mean square error (RMSE), and average absolute error (MAE) to 
evaluate the model's prediction results. The smaller the indicators, the 
more accurate the prediction results are. The specific formula is as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100%𝑛

𝑖=1                                                                    (16) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1                                                                       (17) 

𝑀𝐴𝐸 =
1

𝑛
∑ |(𝑦𝑖 − 𝑦̂𝑖)|𝑛

𝑖=1                                                                       (18) 

Where Yi is the real value at time i; 𝑦̂𝑖  is the predicted value at time i; n is 
the number of samples. 

3.   RESULTS AND DISCUSSION 

3.1   ARIMA Model Construction 

ADF test is used to judge whether the time series data is stable, and the 
result shows that p = 0.152 > 0.05, indicating that the original series is a 
non-stationary time series. The difference operation of d = 1 on the 
original sequence shows that p = 0.039 < 0.05. The significance test shows 
that the first-order difference sequence is stable. Therefore, the first-order 
difference sequence can be modeled.  

The autocorrelation function (ACF) and partial autocorrelation function 
(PACF) are used to determine the order of the ARIMA model, and the 
autocorrelation function diagram and partial correlation function diagram 
are drawn. It can be seen from Figures 5 and 6 that the first-order 
difference sequence ACF and PACF diagrams fall within the confidence 
interval after the second order, so p and q can be taken as 0, 1 and 2. 

 

Figure 5: Autocorrelation function diagram. 

 

Figure 6: Partial autocorrelation function diagram. 

The available values of ARIMA (p, d, q) obtained from ACF and PACF charts 
in the previous step are selected as the optimal model using AIC, BIC and 
HQIC criteria. The results are shown in Table 3. It can be seen from Table 
3 that when p=1, d=1 and q=1, AIC, BIC and HQIC are the smallest, 
indicating that ARIMA (1, 1, 1) has the best fitting effect on the data. After 
the ARIMA (1, 1, 1) model is established, the first 23 years of data are used 
as training data to predict the carbon emissions in the next nine years 
(2013-2021). 
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Table 3: AIC、BIC and HQIC Results. 

（p，d，q） AIC BIC HQIC 

（0，1，0） 305.66 307.09 306.12 

（0，1，1） 282.04 284.90 282.97 

（0，1，2） 280.63 284.93 282.03 

（1，1，0） 264.09 266.96 265.02 

（1，1，1） 261.46 265.76 262.86 

（1，1，2） 262.75 268.48 264.62 

（2，1，0） 264.06 268.36 265.46 

（2，1，1） 262.96 268.69 264.83 

（2，1，2） 262.03 269.20 264.37 

3.2   ARIMA-LSTM Combined Model 

The residual sequence of 23 years from 1990 to 2012 is selected as the 
training sample, and the residual sequence of 9 years from 2013 to 2021 
is selected as the test sample. The maximum minimum method is used to 
normalize it, and the residual predicted by the ARIMA model is converted 
into a value between 0 and 1. Set the data set time step to 3 (that is, use 
the carbon emissions of the previous three years to predict the carbon 
emissions of the following year), set the number of hidden layers of the 
LSTM neural network to 1, and the number of training rounds is 
epoch=600. After repeated training, we can get the best number of training 
times and the number of hidden nodes. Among them, Batch_Size=9, 
Hidden_Size=9. The loss function is the mean square error function MAE, 
and the model optimizer selects Adam. 

Then, the LSTM output data is de-normalized to obtain the residual 
prediction value of the LSTM model. Add the ARIMA model prediction 
value obtained in 3.1 and the LSTM model residual prediction value to 
obtain the ARIMA-LSTM combined model prediction value. 

3.3   Back-Propagation Neural 

First, normalize the data, and select the first 23 years of the data set as the 
training set of the model, and the last 9 years of the data set as the test set. 
The normalized historical carbon emissions every three years are used as 
input, and the carbon emissions affected by historical values are used as 
output. Levenberg-Marquardt backpropagation algorithm is selected as 
the BP neural network training algorithm; Set the maximum number of 
training times as 1000, determine the learning rate as 0.01; Set the number 
of hidden layer neurons to 1-20, and finally get the BP neural network 
model with the optimal number of hidden layer neurons of 6. 

3.4   ARIMA-LSTM-BP Combined Model 

According to the predicted values of the ARIMA-LSTM combined model 
and BP neural network model obtained in 3.1, 3.2 and 3.3, the model is 
recombined using the combination method based on error weight to 
obtain the predicted results of the ARIMA-LSTM-BP combined model.  

3.5   Analysis of Prediction Results 

In order to verify the prediction accuracy and effectiveness of the 
combined model for carbon emissions from the transportation industry, 
the ARIMA model, LSTM model, BP neural network model, ARIMA-LSTM 
model and ARIMA-LSTM-BP combined model were respectively 
constructed for comparison. The comparison between the predicted value 
and the actual value of each model is shown in Figure 7, and the 
comparison results of the evaluation indicators of each model are shown 
in Table 4: 

 

Figure 7: Comparison between predicted and actual values of various models. 

Table 4: Comparison Of Evaluation Indicators Of Various Models. 

Model RMSE MAE MAPE 

ARIMA 52.75 41.11 4.65% 

LSTM 24.99 18.53 2.11% 

BP 24.41 21.36 2.53% 

ARIMA-LSTM 18.92 16.90 2.01% 

ARIMA-LSTM-BP 13.04 12.12 1.42% 

It can be seen from the chart that the ARIMA-LSTM-BP combined model 
has the best prediction accuracy and the most stable prediction result. It 
shows that the combined model can thoroughly combine the advantages 
of a single model and learn from each other. Therefore, the ARIMA-LSTM-
BP combined model can be used to predict the future carbon emissions of 
China's transportation industry. 

3.6   Multi Scenario Prediction 

3.6.1   Scenario Settings 

Through the development of the transportation industry in China and 
referring to a large number of policy documents, the six influencing factors 

in the prediction model are taken as the research object, and three 
scenarios of high carbon, benchmark, and low carbon are set. The 
prediction period of scenario analysis is 2022-2050. Considering the long 
prediction period, in order to ensure the rationality and scientificity of the 
prediction results, three prediction frequency bands will be set for each 
influencing factor, as shown in Table 5. 

Population. Historical data shows that China's population growth has 
slowed significantly in the past six years. From 2016 to 2021, the 
population increased by only 21.57 million, with an average annual 
growth rate of about 0.25%. The seventh national census bulletin shows 
that China's total fertility rate is only 1.3, and the trend of negative 
population growth is visible to the naked eye. According to the Research 
Report on the national population development strategy, China's 
population will peak at 1.442 billion in 2028, showing a negative growth 
trend after that. Therefore, the growth rate of the population in different 
periods under the benchmark scenario is set to be 0.15% from 2022 to 
2028, -0.1% from 2029 to 2038 and -0.25 from 2039 to 2050. 

GDP. In 2021, facing the double test of the ups and downs of the epidemic 
situation in the century and the complex and severe external environment, 
China effectively coordinated the epidemic prevention and control and 
economic and social development, strengthened the cross-cycle 
adjustment of macro policies, and the national economy continued to 
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recover, with an increase of 7.81% over the previous year at constant 
prices. The research on China's long-term low-carbon development 
strategy and transformation path mentioned that during the "14th five-
year plan" period, the average annual GDP growth rate will exceed 5.00%. 
The "14th five-year plan" and the proposal of the long-term goal of 2035 
also clearly put forward the goal of doubling the economic aggregate by 
2035 compared with 2020. Using the quantitative economic model, Xiao 
estimated that the average annual growth rate of China's GDP will reach 
about 5.3% from 2023 to 2025 (Xiao, 2023). Therefore, the growth rate of 
GDP in different periods under the benchmark scenario is set to be 5% 
from 2022 to 2028, 4% from 2029 to 2038, and 3.5% from 2039 to 2050. 

Urbanization rate. In recent years, the level of urbanization in China has 
developed rapidly. In 2021, the urbanization rate reached 64.19%, and the 
urbanization rate of developed countries in the world has stabilized at 
about 85%. Ou et al. have studied China's urbanization rate, which is 
expected to reach about 67.45% by 2025 (Ou et al., 2021). Hu predicted 
that China's urbanization rate would reach 73.41% -74.53% in 2035 
through multiple model screening. It is expected to reach 80% in 2050 
(Hu, 2023). Therefore, the growth rate of urbanization rate in different 
periods under the benchmark scenario is set to be 1.1% from 2022 to 
2028, 0.7% from 2029 to 2038, and 0.35% from 2039 to 2050. 

Energy intensity. In recent years, China's energy intensity has shown a 
downward trend, decreasing by 17.65% from 2016 to 2021, with an 
average annual decline of about 3%. The comprehensive work plan for 
energy conservation and emission reduction during the 14th five-year 
plan puts forward the goal of reducing energy intensity by 10% in 2025 

compared with 2021. From 2021 to 2050, energy intensity decreased by 
about 3.5% annually. Hu et al. pointed out that with the increasing 
difficulty of technical emission reduction, the energy consumption growth 
rate per unit transportation turnover will slow down (Hu et al., 2022). 
Based on this view and the analysis of the actual situation, the growth rate 
of energy intensity in different periods under the benchmark scenario is 
set as -3% from 2022 to 2028, -4% from 2029 to 2038 and -4.5% from 
2039 to 2050. 

Vehicle ownership. With the continuous development and expansion of 
the overall urban scale in China, the demand for automobiles continues to 
grow. By 2021, the number of motor vehicles was 394 million, an increase 
of 104 million compared with 2016, with an average annual growth of 
about 4.4%. Zhou et al. predicted that by 2028, the number of motor 
vehicles would be about 440 million (Zhou et al., 2023). Therefore, the 
growth rate of vehicle ownership in different periods under the 
benchmark scenario is set to be 4% from 2022 to 2028, 3% from 2029 to 
2038, and 1.5% from 2039 to 2050. 

Passenger turnover. In the ten years before the outbreak, from 2010 to 
2019, the average annual increase in passenger turnover was 2.11%. 
Affected by the epidemic, compared with 2019, the passenger turnover in 
2020 and 2021 decreased significantly to 1.29 trillion person kilometers. 
However, with the epidemic's end, passenger turnover will gradually 
warm up, and it is expected to return to its average level in 2028. 
Therefore, the growth rate of passenger turnover in different periods 
under the benchmark scenario is set to be 10% from 2022 to 2028, 2.5% 
from 2029 to 2038, and 1.5% from 2039 to 2050. 

Table 5: Scenario Settings For Various Parameters In The Year. 

Scene Time 
Growth rate of influencing factors 

Population GDP Urbanization rate Energy intensity Vehicle ownership Passenger turnover 

high 
carbon 

2022-2028 

2029-2038 

2039-2050 

0.25% 

0.05% 

-0.15% 

5.5% 

4.5% 

4% 

1.3% 

0.9% 

0.55% 

-2% 

-3% 

-3.5% 

5% 

4% 

2.5% 

11.5% 

3.5% 

2.5% 

benchmark 

2022-2028 

2029-2038 

2039-2050 

0.15% 

-0.1% 

-0.25% 

5% 

4% 

3.5% 

1.1% 

0.7% 

0.35% 

-3% 

-4% 

-4.5% 

4% 

3% 

1.5 

10% 

2.5% 

1.5% 

low carbon 

2022-2028 

2029-2038 

2039-2050 

0.05% 

-0.2% 

-0.35% 

4.5% 

3.5% 

3% 

0.9% 

0.5% 

0.15% 

-4% 

-5% 

-5.5% 

3% 

2% 

0.5% 

8.5% 

1.5% 

0.5% 

3.6.2   Multi Scenario Prediction and Analysis 

Based on good fitting and validity test results of the ARIMA-LSTM-BP 
combined model, carbon emissions from 2022 to 2050 are predicted. The 
prediction results are shown in Figure 8. 

The prediction results show that the peak value of carbon emissions from 
transportation in China is different under the three scenarios of high 
carbon, benchmark and low carbon, and the time to reach the peak value 
is also different, which is 2031, 2034 and 2039 respectively. The 
transportation industry alone cannot achieve the goal of reaching the peak 
carbon by 2030. Under the high carbon scenario, the transportation 
industry will reach a peak of 1624.7732 million tons in 2039, an increase 

of 678.1062 million tons compared with 2021, and 125.7585 million tons 
in 2050, 1.32 times higher than 2021. Under the benchmark scenario, the 
transportation industry will reach a peak of 1478169400 tons in 2034, an 
increase of 531.524 million tons compared with 2021, and will drop to 
113.7572 million tons in 2050, 1.20 times higher than 2021. Under the 
low-carbon scenario, the transportation industry will peak at 1367.5417 
million tons in 2031, an increase of 420.8747 million tons compared with 
2021, and drop to 980.7545 million tons in 2050, 1.03 times higher than 
2021. By comparing the above three scenarios, in order to better keep up 
with the country's goal of reaching the carbon peak by 2030, we should 
choose the low-carbon development scenario. Compared with the baseline 
and high-carbon scenarios, the time of reaching the carbon peak has 
advanced by 3 and 8 years, respectively. 

 

Figure 8: Prediction Results of Carbon Emissions from Transportation in China. 
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4.   CONCLUSIONS AND SUGGESTIONS 

4.1   Conclusions 

This study follows the logic of "Measurement Research - influencing 
factors - prediction model selection - scenario analysis" to conduct a 
specific study of China's transportation carbon emissions and draws the 
following conclusions: 

Firstly, from 1990 to 2021, China's total emissions from transportation 
showed a gradual upward trend. By 2021, the total carbon emissions were 
946.6672 million tons, with an average annual growth rate of 7.37%. 

Secondly, compared with ARIMA, LSTM, BP, and ARIMA-LSTM, the ARIMA-
LSTM-BP combined model shows better prediction ability, higher 
accuracy, and more robust stability. 

Thirdly, the ARIMA-LSTM-BP combined model is used to predict the 
carbon emissions of transportation in the three scenarios. It can be seen 
that the carbon peak time is 2031, 2034, and 2039, respectively, and the 
peak value is 1624773200 tons, 1478169400 tons, and 1367541700 tons. 

Fourthly, if the transportation industry wants to achieve the goal of a 
carbon peak by 2030, it also needs to strengthen low-carbon measures and 
promote low-carbon emission reduction. 

4.2   Suggestions 

Based on the above research and scenario analysis, in order to achieve the 
carbon peak of transportation in China as soon as possible, the following 
suggestions are put forward: 

Firstly, optimize the energy structure. China's transportation industry is 
still an oil-based energy structure, but if we want to achieve a carbon peak 
as soon as possible, optimizing the energy structure is the only way. 
Therefore, the government should increase financial subsidies to support 
the development of new clean energy for the transportation industry. 
Actively promote new energy vehicles, reduce energy consumption, and 
vigorously develop "zero emission" and low-energy trams. 

Secondly, improve the quality of the population. To improve the 
population's quality and promote social technology development, we must 
strengthen energy management, vigorously promote a conservation-
oriented economy, strengthen the publicity and education of the 
environment, and popularize a conservation-oriented culture to create a 
healthy, safe, and comfortable ecological civilization. In order to protect 
our environment, we must actively promote resource conservation and 
encourage people to take adequate measures in daily life to reduce 
dependence on resources to achieve sustainable development. 

Thirdly, improve the level of technological innovation. In order to achieve 
green and sustainable development, we should strengthen technological 
innovation, improve energy efficiency, vigorously promote the low-carbon 
circular economy, and achieve green and sustainable economic 
development to save energy, reduce pollution, and reduce emissions. 

Through the above suggestions, it is hoped that the transportation carbon 
peak can be achieved as soon as possible and that the national goal of 
reaching the carbon peak by 2030 can be achieved. 
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