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Several studies has been conducted to economically cultivate the Monascus sp. However, the potential of using 
stirred drum bioreactor in solid state fermentation (SSF) for Monascus sp. cultivation has been relatively 
understudied. Oil palm frond (OPF) petiole has been used as a potential substrate due to its nutritional contents 
and to add more value to local agricultural waste. This study reports the production of red pigment by Monascus 
purpureus FTC 5357 in a 2.3 L bench top - stirred-drum bioreactor. The fungus was grown on moistened OPF 
substrate (60 % (w/w)) supplemented with 2% (w/w) of soy meal peptone. The effects of different aeration rates 
(0.3-1.0 vvm of humidified air), agitation programme (4-8 cycles per day), and substrate load capacity (25-40 % 
(v/v) of total drum capacity) on red pigment production are reported. Aeration rate showed a positively correlated 
interaction to red pigment production in which the highest red pigment were produced using1.0 vvm (6.09 AU/g 
dry solid), and non-aerated culture showed the lowest red pigment production (0.81 AU/g dry solid). The agitation 
programme was also showing the positive trend of interaction, in which 8 cycles per day showed the highest red 
pigment production (4.34 AU/g dry solid) and 4 cycles per day agitation showed the lowest red pigment production. 
The red pigment production was peaked at 30% (v/v) drum loading capacity (5.61 AU/g dry solid) and the lowest 
at 25% (v/v) (0.89 AU/g dry solid), whereas 40% (v/v) substrate capacity was incapable of being mixed due to low 
power output of agitating motor. Results suggested that OPF was a potent source of substrate for the cultivating 
Monascus purpureus using SSF and all 3 factors (aeration, substrate load capacity and agitation programme) were 
significantly influenced the red pigment production.

1. INTRODUCTION

Generally, most of the manufactured food will be introduced to colorant to 
enhance the attractiveness of the product. These added colors usually will 
increase the product consumption due to manipulation of normal human 
behavioral responses [1] thus significantly increase the demand of colorants 
production. Nowadays, the concern of utilization of organic or natural 
based product is gaining positive acceptance among the consumers. Natural 
colorants are in great demand especially for use in foods and beverages as 
its market was valued at $465 million USD in 2007, a raised of 4.6% from 
the year 2004 [2].

One of the microorganism with high potential  for large scale 
natural pigment production is Monascus sp., due to its ability to produce 
an intense red pigment as well as other beneficiary metabolic by-products 
(e.g. lovastatin, antioxidants) [3][4][5]. In this regard, the use of bioreactors 
are advantageous because of its potential to process significantly larger 
scale of substrate with the aid of parameters control system. As for solid 
state fermentation (SSF) bioreactors, these respective systems are loosely 
associated with flowing water during the fermenting process. 
In typical stirred-drum bioreactor, the bioreactor body remains stationary, 
equipped with impellers mounted on a shaft running along the central axis 
of the bioreactor rotating within the drum. These impellers are usually 
classified in accords to the blades diameter relative to the vessel, and for 
close-clearance agitation, impellers usually having proximity to the tank 
inner wall for efficient bulk blending capability [6].

Despite the high pigment yields in SSF compared to submerged 
cultivation [7], however, the mechanical aspects such as the bioreactor 
design for Monascus sp. fermentation are vastly unexplored. Hence, this 
study has been focused on the SSF of Monascus purpureus using OPF as a 
potential source of substrate in stirred-drum bioreactor, for the purpose of 
red pigment production.

2. EXPERIMENTAL
In this study, a specifically fabricated bioreactor from the Faculty of 
Chemical and Natural Resources Engineering (FKKSA) laboratory, UMP, was 
used (Figure 1).  This bioreactor consists of (1) 2.3 L stainless steel drum
mounted with a self-modified impeller and a direct current-geared motor 
(model: SPG30-30K, Cytron Technologies, Malaysia) with a metal heating-
jacket at the bottom of the drum, (2) a control panel for agitation and

temperature control, and (3) a commercial outlet air pump (ADA, China).

Monascus purpureus strain FTC 5357 stock culture was maintained on 
Potato Dextrose Agar (PDA) and incubated in the dark at 30oC for 7-8 days, 
which was then preserved at 4oC.  Sub-culturing was done once a month for 
adequate propagation of the strain [8].
        Fully sporulated agar slant culture (after 6-8 days incubation) was 
prepared prior to inoculum preparation. Sterile distilled water was added 
to the slant culture, followed by gentle scrapping on the slant surface to 
harvest the spore. The spore concentration was measured and adjusted to 
approximately 105 spores/mL.

The fresh oil palm fronds (OPF) were obtained from a local palm 
oil plantation in Felda Bukit Goh, Kuantan, Pahang. The fresh OPF were 
cut into smaller pieces (approximately 3-4 cm in length), and thoroughly 
washed using diluted detergent. Later, the OPF were rinsed with tap water 
several times. The clean OPF were then dried at 60o C for 2 to 4 days. Next, 
the dried OPF were chipped using a large scale wood chipper before being 
pulverized into smaller particles (<1.0 mm) using a commercial grinder 
(Retsch ZM-200). The OPF particles were autoclaved with distilled water 
in 1:18 ratio (w/v) at 121oC for 15 minutes [9]. The pre-treated OPF were 
filtered and washed with distilled water, before being oven dried at 60o C.
Experiments were conducted in a 2.3 L stirred drum bioreactor. An empty 
bioreactor drum and the treated OPF having an initial moisture content of 
60% (w/w) was supplemented with 2% (w/w) of peptone, were separately 
autoclaved. After being cooled to room temperature, the substrates were 
inoculated with 105 spores/mL of Monascus purpureus FTC 5357, evenly 
mixed and aseptically transferred to the bioreactor. The cultures were 
cultivated for 16 days in the dark at room temperature. Red pigments 
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production was determined using a UV-VIS spectrophotometer (Hitachi 
U-1800).
Series of experiments had been conducted to study the effect of aeration 
rate, agitation and loading capacity of the drum to red pigment production 
by Monascus purpureus strain FTC 5357 in a stirred drum bioreactor.All 
of conducted experiment were subjected to initial moisture content of 
60% (w/w) of substrate supplemented with peptone (2%, w/w), 0.5 vvm 
of humidified air, loading capacity of 30% (v/v) and were agitated for 6 
rotations/ day in the dark at room temperature in 8 days, unless otherwise 
mentioned.
	 As for factor of aeration studies, the treated OPF were aerated at 
three aeration rates of 1, 0.5 and 0.3 vvm of humidified air. For programme 
of agitation studies, OPF wereagitated at different frequency of 4, 6 or 
8 rotations/day. The time duration between each rotation was evenly 
distributed. Lastly, for effect of the drum loading capacity studies, treated 
OPF were loaded to the drum at 35%, 30%, or 25% (v/v) of drum capacity, 
separately.
	 After fermentation, the fermented OPF-solvent solution was 
allowed to settle for 15 min followed by filtration through a Whatman 
No.1 filter paper. Unfermented substrate was used as a blank. Analysis 
of pigment concentration was done using a UV-VIS spectrophotometer 
(Hitachi U-1800) by measuring absorbance at 500 nm. The yield was 
expressed as absorbance units (AU) per gram of dried solids [10][11]
[12]. Glucose from the fermented OPF was extracted by a simple contact 
method previously outlined by Hong et al.,(2012) with slight modifications 
[13]. The fermented OPF were suspended in deionized water in a ratio of 
1:10 (w/v), and then incubated for 90 min at 30o C in a rotary shaker set 
at 150 rpm. The suspension was then centrifuged at 5000 rpm for 30 min, 
4 °C, and then filtered through a Whatman No. 1 filter paper. The glucose 
measurements of the sample were estimated using standard dinitrosalicylic 
(DNS) colorimetric method [14].

3. RESULTS AND DISCUSSION
The yield of red pigment was monitored and observed from day 0 until 
day 16 of incubation (Figure 2). The fermentation was done at room 
temperature, 60% (w/w) initial moisture content, 2% (w/w) of peptone in 
a stirred drum bioreactor with loading capacity of 30% (v/v) and agitated 
of 8 cycles per day.
According to Zahari et al., (2012), pressed juice from OPF petiole consisted of 
approximately 71% glucose;  27% sucrose and  2% fructose[15], supporting 
the similar finding was found on OPF in-situ enzymatic hydrolysis results 
of Hong et al., (2012) where the most common product of OPF was glucose 
(approximately 69.2 %) (Figure 2)[13].

 

Heat removal can be a notable constrain in maintaining the efficiency of SSF. 
In the present study, aeration with humidified air seems to be an adequate 
solution to overcome this limitation. The effect of aeration on red pigment 
production is shown in Figure 3. The non-aerated culture showed the lowest 
red pigment production (0.81 AU/g dry matter) (Figure 3). The cause of 
this phenomenon was due to an inadequate air flow to remove accumulated 
heat from fungal metabolisms especially from central and bottom of the 
substrate bed, thus increase the temperature of the vessel. Secondly, loss 
of gaseous and water required for metabolism of Monascus sp. due to 
evaporation. Oostra et al., (2000) [16] have stated that the low rate of liquid 
diffusion would strongly inhibit oxygen transfer at the particle level of 
fungal hyphae, thus notably affecting the overall cultivation performance. 
In addition, similar finding was found by Han and Mudgett (1992) where 
under anaerobic condition the fungal growth and pigment production were 
retarded [17].

The productions of red pigment by aerated cultures in this study were 
significantly higher compared to those of the non-aerated cultures, 
showing the increasing trend of red pigment production due to increased 
aeration. The culture with 1 vvm aeration indicated the highest red pigment 
production suggesting that an effective transformation of heat, water and 
oxygen, between the reactor’s headspace and substrate particles. These 
results were contrary to those of packed bed bioreactor study [18], where 
the optimal value was obtained at 0.05 vvm might be due to the saturated 
air in the drum bioreactor not directly flowing through the substrate bed, 
thus, higher rate of airflow were needed to remove the accumulated heat in 
the substrate bed.
Successful fungal growth is strongly influenced by the heat transfer between 
the bed and headspace [19], which are dependent on effective mixing. 
Figure 4 shows the frequency of agitation per day was directly proportional 
to the rate of red pigment production. At 8 cycles per day the highest red 
pigment production was 4.34 AU/g dry solid while 4 cycles per day resulted 
in the lowest red pigment production at 1.915 AU/g dry solid.
Basic water requirement was being supplied by the saturated air within 
the headspace, suggesting a continuous mixing as a more relevant mode of 
agitation in order to achieve uniformity of water distribution in the substrate 
bed. Thus, it may increas the contact surfaces between the substrate and 
saturated air. However, excessive agitation can be detrimental toward 
process performance, causing damages to fungal hyphae due to shear and 
impact forces from the agitator [19]. Alternative intermittent agitation was 
adopted to minimize the effect of shear forces on fungal growth, without 
jeopardizing the importance of mixing.
Furthermore, the growth of fungal mass may not be necessarily uniform 
within the bed. Depletion of nutrient supply may occur to the older and 
central hyphae while the aerial hyphae at the surface may propagate 
better on the substrate to acquire new sources of nutrients and maintain 
their growth [20]. Thus, implementing the intermittent agitation will most 
probably optimise the dynamics of fungal growth inside the bioreactor. In 
this case, 8 cycles/day programme was the most suitable agitation program 
in which timing of the mixing met the favourable growth condition of 
Monascus sp. for red pigment production (Figure 4).

To attain an optimal gaseous transfer and avoid excessive accumulation of 
generated heat in the substrate bed, especially during non-agitating (static) 
periods, it is crucial to limit the volume of the substrate bed. Otherwise the 
continuous mixing would most probably be necessary in order to aerate 
a relatively large volume of substrate, particularly in the central and at 
the bottom of the bed. Substrate capacity also strongly affects the fungal 
growth, as surface-mass ratio of the substrate was directly related to the 
surface area available for the growth to occur [21].
A method to determine the optimal loading capacity of a bioreactor has 
not been well established, especially in regard to this study. However, a few 
investigative approaches were available in the literature [22]. Considering 
the attempt to achieve optimal height/volume of substrate bed, fractional 
filling will allow an optimum utilisation of the drum volume. However, 
preferable the maximum working capacity for a reasonable mixing is about 
40% of the total drum volume [23]. Using this experimental approach, the 
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optimized volume for each combination of substrate and microorganism 
should be determined.
In this study, the 40% (v/v) substrate capacity was not being agitated by 
the impeller, due to limitation of the DC-geared motor power output. Thus, 
35% (v/v) of working substrate capacity was assumed as the maximum 
loading capacity of the drum. Experimental results in Figure 5, showed 
that 30% (v/v) of load were sufficient for red pigment production, by 
achieving a higher red pigment yield (5.605 AU/g dry solid) compared to 
the other parameters.The 25% (v/v) loading capacity produced the lowest 
red pigment production, suggesting that the sheer force of agitation (rpm 
was held constant for all experiments) was intolerable for the amount 
of substrate used (Figure 5). Also at 25% (v/v) loading capacity, fewer 
substrates will achieve greater shear force resulting in a higher mycelial 
disruption rate than mycelial formation rate, thus affecting the product 
formation. On the other hand, at a larger loading capacity of 35% (v/v), 
slightly lower red pigment production was obtained.

4. CONCLUSION
The present study demonstrated OPF was capable of being fermented 
by Monascus purpureus to produce a relatively significant amount of 
red pigment using SSF. Factors of aeration rate, substrate load capacity 
and agitation programme were significantly influenced the red pigment 
production in a stirred drum bioreactor suggesting a further need for 
optimization.
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